Open side-bar Menu
 ArchShowcase
Sanjay Gangal
Sanjay Gangal
Sanjay Gangal is the President of IBSystems, the parent company of AECCafe.com, MCADCafe, EDACafe.Com, GISCafe.Com, and ShareCG.Com.

Underwood Pavilion in Muncie, Indiana by Gernot Riether

 
October 8th, 2014 by Sanjay Gangal

Article source: Gernot Riether

The Underwood Pavilion was featured by The Star Press as Indiana’s new art destination. The traveling pavilion celebrates the qualities and potentials of Indiana’s post-industrial landscape through attracting people to places that are currently not considered public space. The pavilion is the outcome of the Digital Design Build Studio, directed by Gernot Riether and Andrew Wit, both professors at Ball State University. At the time it is located close to Muncie, a 70,000 inhabitants city in central Indiana.

Image Courtesy © Gernot Riether

Image Courtesy © Gernot Riether

  • Architects: Gernot Riether
  • Project: Underwood Pavilion
  • Location: Muncie, Indiana, U.S.A.
  • Design and Realization: Gernot Riether, Prof. Dipl.-Ing., M.S. Architect, Andrew Wit, Prof. M.S.
  • Project Team: Gernot Riether and Andrew Wit with Noor Al-Noori, Andrew Heilman, Chris Hinders, Charles Koers, Huy Nguyen, Nick Peterson, Steven Putt, Ashley Urbanowich
  • Supported by: Ball State University
  • Community partner: Muncie Makers Lab
  • Promotion of art event: The Star Press, Muncie Indiana
  • Faculty: Prof. Gernot Riether, Prof. Andrew Wit
  • Students: Noor Al-Noori, Andrew Heilman, Chris Hinders, Charles Koers, Huy Nguyen, Nick Peterson, Steven Putt, Ashley Urbanowich
  • Grants and support: Ball State University, Department of Architecture, Chair: Prof. Mahesh Daas

Image Courtesy © Gernot Riether

Image Courtesy © Gernot Riether

Teaming up with the local art community the pavilion set off Muncie’s First Thursday Art Event and expanded it into the post-industrial landscape that is surrounding the city. This required negotiations with property owners as private property was turned into art-destinations. Located at a narrow stretch of land between two man made fishing ponds the pavilion draws attention to its surrounding landscape by framing views of the lake, apple trees and a nearby forest. The pavilion is constructed from 56 different modules that are forming a self-shading structural system creating a cool environment in the hot summer months of Indiana.

Image Courtesy © Gernot Riether

Image Courtesy © Gernot Riether

Lightweight structure: The Underwood pavilion’s modules were developed from different variations of a 3strut Tensegrity module. Varying the distance between the upper face and the lower face and varying the scale between the upper face and the lower face of the module informed the curvature of the envelope. These variations also generated a different rotation within each module causing the envelope to twist in different directions. The structural simulation engines Rhino Membrane and Kangaroo were essential tools in the form finding process of the pavilion’s structure.

Image Courtesy © Gernot Riether

Image Courtesy © Gernot Riether

The final Tensegrity state of a module could only be reached with all cables in tension and all bars in compression. The entire system remained loose with all members being connected except one. This allowed for the modules to be stacked and transported efficiently as a loose low–volume bundle of bars and cables (3” x 3” x 6’). At the site of construction only one cable per module had to be joined. Using a turnbuckle to connect the final node allowed regulating the stress in the module until it snapped into the predicted Tensegrity geometry. Each of the 56 modules describes a volume of 3’ x 3’ x 3’ to 4’ x 4’ x 4’.

Image Courtesy © Gernot Riether

Image Courtesy © Gernot Riether

Self-shading envelope: To respond to a specific context the modules were arranged in a Tensegrity pattern. Skipping every second module in every second row created smaller and larger openings that were placed to frame the environment. Elastan, an eco-friendly polymer originally used for sportswear was adapted to create the pavilion’s self-shading envelope. Elastan is created from filaments that are more durable than non-synthetic materials such as rubber. It can be produced from 100% renewably sourced raw material such as recycled polyester. Once all modules were connected each module was dressed with an elastic fabric to form a minimal volume that was defined by the location of the struts and the elastic quality of the fabric.

Image Courtesy © Gernot Riether

Image Courtesy © Gernot Riether

Tensegrity structures have large advantages compared to other structural systems. Using predominantly tension members they are lighter and stronger than conventional systems. As temporary lightweight structure the Underwood pavilion additionally takes advantage of the self-erecting behavior of Tensegrity systems. Using physics engines as a design tool shows how Tensegrity systems can be parameterized to adapt to site and program.

Image Courtesy © Gernot Riether

Image Courtesy © Gernot Riether

Image Courtesy © Gernot Riether

Image Courtesy © Gernot Riether

Image Courtesy © Gernot Riether

Image Courtesy © Gernot Riether

Image Courtesy © Gernot Riether

Image Courtesy © Gernot Riether

Image Courtesy © Gernot Riether

Image Courtesy © Gernot Riether

Image Courtesy © Gernot Riether

Image Courtesy © Gernot Riether

Image Courtesy © Gernot Riether

Image Courtesy © Gernot Riether

Image Courtesy © Gernot Riether

Image Courtesy © Gernot Riether

Image Courtesy © Gernot Riether

Image Courtesy © Gernot Riether

Image Courtesy © Gernot Riether

Image Courtesy © Gernot Riether

Image Courtesy © Gernot Riether

Image Courtesy © Gernot Riether

Image Courtesy © Gernot Riether

Image Courtesy © Gernot Riether

Image Courtesy © Gernot Riether

Image Courtesy © Gernot Riether

Image Courtesy © Gernot Riether

Image Courtesy © Gernot Riether

Image Courtesy © Gernot Riether

Image Courtesy © Gernot Riether

Tags: , ,

Category: Pavilion




© 2024 Internet Business Systems, Inc.
670 Aberdeen Way, Milpitas, CA 95035
+1 (408) 882-6554 — Contact Us, or visit our other sites:
TechJobsCafe - Technical Jobs and Resumes EDACafe - Electronic Design Automation GISCafe - Geographical Information Services  MCADCafe - Mechanical Design and Engineering ShareCG - Share Computer Graphic (CG) Animation, 3D Art and 3D Models
  Privacy PolicyAdvertise