Open side-bar Menu
 3DEXPERIENCE Construction

Posts Tagged ‘Productization’

Specialty contractors become virtual makers

Friday, August 5th, 2022

Today, specialty contractors capture value only after they have installed the physical product. This arrangement subjects these subcontractors to the same potential financial sinkholes around budget and timeline faced by general contractors.

With the adoption of productization, specialty contractors will see their business model evolve as they embrace new roles and revenue streams by shifting to so-called “virtual makers.” Virtual makers contribute to the virtual twin by applying trade-specific knowhow in the upstream design and simulation phases. They collaborate on a single model of a construction project in a virtual environment along with fellow specialty and general contractors — and are compensated accordingly for their time, expertise and continuous access to their virtual creations and intellectual property.

It’s important to note that as the productization transformation unfolds, specialty contractors have the opportunity to continue to offer existing trade-based services at the off-site manufacturing and assembly phases. The newfound virtual maker role will be a second function to perform as industry-wide change progresses in the coming years. Over time, the physical installation work will take a backseat to the virtual work.

Virtual makers are positioned to collaborate more strategically with owners and GCs and to contribute to a more successful construction outcome. An experiencebased understanding of trades is incredibly valuable and contractors can be compensated proportionately for contributing this knowledge upstream. With the rules of a trade virtualized and integrated into a virtual twin of construction, specialized skills can scale.

Defining and integrating construction modules

Thursday, July 28th, 2022

In an optimized design and construction process, the virtual twin captures the architect’s intent: the types of materials desired, styles of rooms, types of constraints to address, etc. The construction team can then assemble the building based on a list of integration-ready modular systems identified in the virtual construction twin.

With this approach, the GC (as prime integrator) orchestrates the work from virtual makers, prefab shops and microfactories, and determines the construction experience needed to deliver and install productized modules in the field.

Assembly OSM: A Modular Strategy in Action

A rendering of the still under-wraps future full building project.
(Photo courtesy of Assembly OSM)

New York-based Assembly OSM, founded by SHoP Architects co-founders Bill and Chris Sharples, was established as a modular construction company. The team engineers components and sub-assemblies (structural steel chassis; unitized facades; wall, floor and ceiling cassettes; mechanical, electrical, plumbing and environmental systems; kitchen, bathroom and casework pods; building cores with elevators and stairs) to fit a single platform of infinite combinations.


Implications of productization on construction roles and responsibilities

Thursday, July 21st, 2022

Today, each construction project is managed as a discrete effort and building models are still commonly delivered as drawings. General Contractors analyze the drawings, itemize the parts needed, order them from suppliers and ship them to a site where they are installed by craftspeople.

With off-site manufacturing and assembly, parts are first shipped to a prefab shop and pre-assembled so tradespeople are not running into each other. Some specialty contractors can work indoors. Processes have industrialized, the work is somewhat more efficient, but the traditional sequencing of processes remains the same.

In the near future, construction will be organized like a multi-tier manufacturing chain, which is exponentially more scalable. What does this transformation mean for the individual players within the construction value chain?

In The Next Normal in Construction, McKinsey & Company projects that GCs risk losing 20% to 25% of their value in a fully productized value chain in the coming years and specialty contractors risk 9% to 13% of their already modest slice. By resisting change, GCs will be disintermediated from the building delivery process. They will find themselves competing against module manufacturers and the firms that partner with them. In contrast, those who embrace productization and adapt as follows will retain the most value and demonstrate the most resilience through the transformation of the industry.


Productization vs. industrialization in construction

Thursday, July 14th, 2022

Productization drives more value, offers more scalability, and bypasses financial sinkholes triggered by trade-based interference.

Advanced Modularization Techniques

With integration-ready, multi-trade modules, the construction virtual twin-based approach can ultimately extend upstream to realize model-driven procurement, as well as microfactory-powered manufacturing and assembly processes.

Standardized interfaces reduce the complexity of materials needed on site and support procurement automation. Microfactories are structured to service multiple construction clients by manufacturing customized modules with standardized interfaces. Using a microfactory drastically reduces the cost of designing, manufacturing, and assembling these custom building blocks. With the growing adoption of integration-ready modules, generative configuration and variant management will open the door to a construction module marketplace complete with virtual construction experiences.

How are integrated-ready modules transforming construction processes?

Thursday, July 7th, 2022

A modular approach to building design offers a high degree of configurability. It also enables the engineering of building systems outside of a project cycle, increasing scalability and cost efficiency. Virtual construction twin enables a construction project team to develop integration ready modules for this new approach. They include standardized interfaces, multi-trade assemblies, and generative variants.


Standardized Interfaces Accelerate Installations

Interfaces are the mechanisms by which a module connects to another module or to the larger build. Integration-ready modules must allow for interchangeability, with flexible outcomes and a wide range of end-product variants.

Construction modules can offer great value with standardized interfaces. By decoupling trade-centric knowledge from the physical tasks of the construction job, module interfaces can be designed such that unskilled labor can perform on-site installations at scale.

Much like consumers are able to insert a standardized electrical plug on a home appliance into a wall outlet without the support of an electrician, any laborer can be trained to install construction modules with standardized interfaces without the need for tradespeople on site. (more…)

Productization drives radical new levels of value and scalability in construction

Thursday, June 30th, 2022

Today, technology is available to support a radically different approach to construction. Productization is a strategy for delivering hyper-customized, efficient construction solutions at scale. This approach uses virtual construction twins to enable the application of generative, configurable design strategies to the factory construction and management of modular systems.

In contrast to off-site manufacturing that preserves trade-based workflows, productization delivers to the construction site “integration-ready modules” that offer substantial gains in quality, speed and versatility.

Integration-Ready Modules: Rethinking the Core Elements of Construction

Modularization is a key concept in productization, yet it is often misunderstood. A recalibrated take on modularity reveals how these elements can be easily configured across a platform without sacrificing creativity. Modules can be much more sophisticated than mobile trailers, as is the misconception in the United States.

In the automotive industry, we see that vehicle production gains cost efficiency because each vehicle is an assembly of standard, modular components that can be engineered en masse. However, cars all take the same general form. Buildings, on the other hand, are approached as one-off projects, each with a unique shape. Uniformity is not achievable in construction — nor should it be the goal. No one wants the same building as their neighbor and variation between site requirements makes this idea impractical.


Uniformity is not achievable in construction — nor should it be the goal.

A modular approach to building design offers a high degree of configurability. It also enables the engineering of building systems outside of a project cycle, increasing scalability and cost efficiency.

We can already see construction productization in action on a small scale with elevators, which have been integrated into buildings as complete assemblies for decades. In essence, an elevator is a module that contains a complex array of components and systems. Taking an “everything is an elevator” mentality can give birth to a whole new industry of multi-trade, integration-ready construction modules.

An integration-ready module is one that includes standardized interfaces, multi-trade assemblies and generative variants. You can learn more about what productization means for the construction industry. Read more in our white paper.


This article is excerpted from THE PRODUCTIZATION EFFECT: How integration-ready modules will transform the roles of general contractors, specialty contractors and the entire construction value chain. This white paper maps the path to productization and defines how general contractors, specialty contractors and the entire construction value chain can leverage virtual twins on an end-to-end collaboration platform, transcend the limitations of classic industrialization and leapfrog to personalized construction.


Why the construction industry is evolving from BIM to virtual twins

Thursday, June 23rd, 2022

While building information modeling (BIM) was once considered a critical piece in efficiency driving construction project delivery, the truth is that BIM applications have not met the needs of GCs and specialty contractors. After more than a decade in use by architects and engineers, few construction companies can credit cost savings to BIM because the applications are not used in the field.

BIM’s usefulness as a specifications solution for architects does not translate well to construction. A BIM model of a door, for example, may contain sizing, acoustic information, fire performance and other characteristics, but it will not include the granular definitions of components needed to make a purchasing list. As a workaround, contractors are likely to flatten the BIM model into a paper drawing and create a spreadsheet from which to order components.


Overcoming limitations of the prefabrication method in construction

Thursday, June 16th, 2022

Prefabrication is one strategy that has gained traction within construction and allows a team to mature from managing pure site-built projects, the vast majority of developments happening today, to an off-site manufacturing and assembly approach.

Moving construction processes off site into a prefab shop offers nominal advantages. The controlled environment permits work to continue regardless of inclement weather, quality is improved in a controlled environment, and skilled labor can be concentrated in the warehouse while unskilled labor can be deployed to perform on-site assembly.

While prefabrication solves some logistical problems, it also carries some critical limitations. Prefabricated components are limited to a maximum size and weight since they still must be transported to the jobsite. This process creates two locations to control because some assembly work happens in the prefab shop, while other activities take place on the construction site. These logistical issues increase the cost of large, low-density prefabricated assemblies.


The limits to industrialized construction

Sunday, June 5th, 2022

Over the last decade, the construction industry has come to terms with the need to make significant changes. Most major players have taken steps to improve efficiency, borrowing lessons from manufacturing industries and adopting digital design, off-site construction and prefabrication strategies. However, there are critical differences between high-volume, mass-production, industrialized manufacturing and one-off, hyper-customized, large-scale construction projects. These differences demonstrate the need for an altogether new approach to construction delivery.

Lessons from the Industrial Revolution

Until the Industrial Revolution, craftsmanship was the sole solution for creating goods, including buildings. Each product was developed by hand, with the potential for quality to vary across goods produced.


REFERENCE: “The drivers to new paradigms are market and society needs.” The Global Manufacturing Revolution: Product-Process-Business Integration and Reconfigurable Systems by Yoram Koren (November 2010). Reprinted with permission from John Wiley & Sons.

With the advent of the Industrial Revolution, manufacturers were able to mass-produce goods to satisfy demand with a high volume of products. The tradeoff is that mass production relies on component standardization and limited product variety to achieve cost efficiencies. This standardization at high volumes removes any opportunity for personalized production.

Manufacturers of mass-produced goods are now beginning to navigate this challenge as they recognize the limits of industrialization in their own context. The emergence of Industry 4.0 is meant to support manufacturers in harnessing data to drive greater flexibility in production processes and the mass customization of goods. (more…)

© 2022 Internet Business Systems, Inc.
670 Aberdeen Way, Milpitas, CA 95035
+1 (408) 882-6554 — Contact Us, or visit our other sites:
TechJobsCafe - Technical Jobs and Resumes EDACafe - Electronic Design Automation GISCafe - Geographical Information Services  MCADCafe - Mechanical Design and Engineering ShareCG - Share Computer Graphic (CG) Animation, 3D Art and 3D Models
  Privacy PolicyAdvertise