Open side-bar Menu
 Nemetschek Group
Sanjay Gangal
Sanjay Gangal
Sanjay Gangal is the President of IBSystems, the parent company of, MCADCafe, EDACafe.Com, GISCafe.Com, and ShareCG.Com.

Building Lifecycle Intelligence: Leveraging Data Over Time

November 6th, 2020 by Sanjay Gangal

Productivity in the building lifecycle has only improved by 1% annually over the last several years, mainly due to inconsistencies and data loss between the different phases. Are digital twins the solution?

Interview partner: Koen Matthijs Chief Division Officer, Operate & Manage Division at the Nemetschek Group

There is enormous potential for digital twins to leverage information from across different phases – and even across buildings – in a transformative way. But, it depends on the type of digital twin: are we talking about a basic form – i.e. a digital copy, model, or simulation of a physical object used to capture information about systems, assets, or processes, which can then be leveraged to optimize the use of the physical object? Or about a true digital twin, which has a real-time connection to the physical twin? This means that changes in the physical twin are reflected in the digital model, typically through extensive use of Internet-of-Things (IoT) devices and sensors.

Ideally, the digital-physical link should be bi-directional, meaning that the digital twin can produce changes in the physical object, with those changes registering back in the virtual copy. If that is the case, the information and implications from each stage of a building lifecycle – whether in terms of cost, durability, or user experience – can be leveraged for other stages. Aggregating information from each stage, across different building owners, and over multiple building lifecycles can help us learn about what the downstream effects of every design or construction choice are likely to be. Ultimately, those lessons can help architects, engineers, and building managers develop and operate better-performing buildings. This knowledge accumulation is known as Building Lifecycle Intelligence (BLI).

Why is this essential for all disciplines across the building lifecycle?

Practitioners in each stage of the building lifecycle have made enormous progress in collecting and streamlining the use of critical information for their business. However, each time a handover of a model occurs, some amount of information is wasted or corrupted.

Perhaps the engineers on the ground cannot secure the exact materials that had been planned in the design stage and make a substitution that is not entered into the model. Maybe a building in the operational stage is sold and only “critical” information is passed on to the new owner.

Instead, if all data were centralized in a “single source of truth” that tracked all of the changes over every phase of the building’s lifecycle, and protected and anonymized that data to account for proprietary uses, then the value of the information would be maximized and future planners would benefit from all of the potential insights gained between planning and decommissioning.

What does that mean for the operational (“manage”) phase of a building?

The concept of Building Lifecycle Intelligence becomes even more exciting when building information also includes sensor data that monitors the actual usage. If a planner has empirical evidence to support the idea that certain types of window configurations lead to more extensive use of a space across decades of building use, then that could inspire future design alterations – and could even justify investment in more expensive design choices. Likewise, if utilization data point to changes in the way common spaces are used, newer buildings could adapt to those patterns, creating a more tailored environment.

Significantly, BLI also addresses one of the inherent challenges in the buildings market: while the costs of construction are borne up front and tend to drive budget calculations, in fact, as much as 80% of a building’s lifecycle cost occurs during the operational phase. By driving insights about the long-term operational costs of design choices, we can develop more efficient buildings with lower total lifecycle costs.

Seeing the benefits of BLI, why is BIM only used in the design and build phases?

This is still true for most projects, but we are seeing this changing. New developments such as the integration of the Bimplus collaboration platform by Allplan with the latest Integrated Workplace Management System (IWMS) release MCS20 by Spacewell, for example, support our vision of BIM-enabled facilities management. The Bimplus solution provides a platform for collaboration using building model data, allowing digital information to be unified across all disciplines along the entire lifecycle of buildings. The BIM working methodology can thus support the entire building life cycle: not only the design and construction phases, but also building operations and facility management (FM).

BIM-enabled FM is still in the early stages, but it forms the basis for sustainable and holistic digitization in the real estate industry. It is a decisive step towards seamlessly connecting the AEC industry with end-to-end digital processes. By embedding BIM data into an IWMS while also connecting with the IoT sensors to collect data about building utilization, we are extending the value of BIM beyond design and construction. And we are opening the way to create digital twins that help owners and project teams leverage intelligence throughout the building lifecycle.

AECCafé Interview – new workflow solution ‘Integrated Design’ by Nemetschek

August 10th, 2020 by Sanjay Gangal

A few week ago, the Nemetschek Group launched a new workflow solution. Can you explain what kind of solution this is?

The new workflow solution Integrated Design will enable architects, structural engineers, and MEP engineers to increase collaboration by working as agile teams. The development of this next evolution of model-based collaboration between architects, structural engineers, and MEP engineers, was pioneered by three Nemetschek Group brands: GRAPHISOFT, RISA, and SCIA. Our Group approach of putting customers first and driving open standards and interoperability formed the basis for this innovation.

Viktor Varkonji

Interview partner: Viktor Várkonyi,  Chief Division Officer of the Planning & Design Division and member of the Executive Board of the Nemetschek Group

Currently, most architects and engineers, especially in the early building design phases, work in so-called silos. While software tools have improved greatly in the last 20 years, the original process still stands. Architects create a design. At a certain stage, a structural engineer is called in. The different disciplines work on their own duplicated datasets, trying to coordinate changes as they loop through cycles. This is a rather slow and error-prone process with many iterations. This process is known as the “federated model” approach. A series of separate BIM models each produced by various consultants, architects, and the general contractor, are combined (federated) at various stages of the process. The structural engineer’s BIM model is sent to the architect and vice versa many times over as part of the normal design, engineering, and documentation phases of the project. This process also repeats with other consultants, architects, and MEP engineers. The outcome is slow decisions, made in silos of the professions, instead of being optimized for the overall objectives of the client. With an integrated approach, architects, structural engineers, and MEP engineers can instead work in the design processes as one team, in a more cross-functional, highly interactive, and collaborative manner. The result will be great buildings delivered on time and on budget.

Read the rest of AECCafé Interview – new workflow solution ‘Integrated Design’ by Nemetschek

How BIM is Changing Bridge Engineering

June 26th, 2020 by Sanjay Gangal

The bridge sector is lagging the building industry with respect to the use of BIM technology, although the number of structural components and data to be managed in bridge projects is usually considerably higher than in an average building project. The added complexity often leads to exploding costs or missed deadlines. We talked to Vanja Samec, General Manager of ALLPLAN Infrastructure and one of the leading visionaries in the Nemetschek Group on infrastructure. She explains why the industry needs more BIM and why Allplan Bridge should be recognized as the most advanced bridge solution on the market.

Vanja Samec, General Manager of Allplan Infrastructure. Copyright: ALLPLAN Infrastructure.

SG: Congratulations on releasing Allplan Bridge 2020. How long have you been working on Allplan Bridge and what do you consider the main benefits?

VS: Thank you. The congratulations are deserved for our entire enthusiastic team: engineers and developers with many years of experience in the bridge sector. Looking back, it was obviously a lot of work, but we knew what we wanted to develop, and we were using our long-term experience. We are proud that we created something, that the bridge industry was missing, and that is also required from authorities worldwide. It seems, that we hit the nerve of the bridge industry and its demands. As you might know, ALLPLAN is part of the Nemetschek Group, or the “Nemetschek Eco System” as we describe it. The Group is supporting innovations – in my opinion this is the key for long term success. Still we are empowered to maintain our identity and work very closely to our customers. When we think of “innovations” we do not refer to the flashy, shiny things that might become important for clients 5, 10 or 15 years from now. For us “true innovation” is things that help our clients right away.

Read the rest of How BIM is Changing Bridge Engineering

© 2024 Internet Business Systems, Inc.
670 Aberdeen Way, Milpitas, CA 95035
+1 (408) 882-6554 — Contact Us, or visit our other sites:
TechJobsCafe - Technical Jobs and Resumes EDACafe - Electronic Design Automation GISCafe - Geographical Information Services  MCADCafe - Mechanical Design and Engineering ShareCG - Share Computer Graphic (CG) Animation, 3D Art and 3D Models
  Privacy PolicyAdvertise